What is Mathematical Biology and how useful is it?

Document Type : Translation

Author

Department of Pure Mathematics Faculty of Mathematics, Ferdowsi University of Mashhad

Abstract

.

[1]  B.D. Aguda and A. Friedman, Models of Cellular Regulation, Oxford University Press, 2008.
[2]  X. Chen and A. Friedman,  A  free  boundary  problem  for  an  elliptic-hyperbolic  system:  An application to tumor growth, SIAM J. Math. Anal. 35 (2003) 974– 986.
[3]  G. Craciun, A. Brown and A. Friedman, A dynamical system model of neurofilament trans- port in axons, J. Theor. Biology 237 (2005) 316–322.
[4]  J.  Day,  A.  Friedman  and  L.S.  Schlesinger,  Modeling  the  immune  response  rheostat  of macrophages in the lung in response to infection, PNAS 106 (2009) 11246–11251.
[5]  M. Fontelus and A. Friedman, Symmetry-breaking bifurcations of free boundary problems in three dimensions, Asymptotic Analysis 35 (2003) 187–206.
[6]  A.  Friedman,  What  is  Mathematical  Biology  and  how  useful  is  it?   Notices  Amer.  Math. Soc. 57 (2010), no. 7, 851-857.
[7]  A. Friedman and B. Hu, Bifurcation from stability to instability for a free boundary problem arising in a tumor model, Archive Rat. Mech. and Anal. 180 (2006), 293–330.
[8]  A. Friedman and B. Hu, Uniform convergence for approximate traveling waves in reaction-hyperbolic systems, Indiana Univ. Math. J. 56 (2007) 2133–2158.
[9]  A.  Friedman  and  B.  Hu,  Uniform  convergence  for  approximate  traveling  waves  in  linear reaction-diffusion-hyperbolic systems, Arch. Rat. Mech. Anal. 186 (2007) 251–274.
[10]  A. Friedman and B. Hu,  Bifurcation  for  a  free  boundary  problem  modeling  tumor  growth by Stokes equation, SIAM J. Math. Anal. 39 (2007) 174–194.
[11]  A. Friedman and B. Hu, Bifurcation from stability to instability for a free boundary problem modeling tumor growth by Stokes equation, J. Math. Anal. Appl. 327 (2007) 643–664.
[12]  A. Friedman and B. Hu, Stability and instability of Liapunov- Schmidt and Hopf bifurcation for a free boundary problem arising in a tumor model, Trans. Amer. Math. Soc. 360 (2008) 5291–5342.
[13]  A. Friedman, C.Y. Kao and C.W. Shih, Asymptotic phases in cell differentiation model, J. Diff. Eqs. (2009) 736–769.
[14]  A.  Friedman  and  F.  Reitch,  Symmetry-reactive  bifurcation  of  analytic  solutions  to  free boundary  problems:  An  application  to  a  model  of  tumor  growth,  Trans. Amer. Math. Soc. 353 (2001) 1587–1634.
[15]  A. Matzavinos, C.Y. Kao, J. Edward, F. Green, A. Sutradhar, M. Miller and A. Friedman, Modeling oxygen transport in surgical tissue transfer, PNAS 106 (2009),12091–12096.
[16]  M.C. Reed,  S. Venakides and J.J. Blum,  Approximate  traveling  waves  in  linear  reaction- hyperbolic equations, SIAM J. Appl. Math. 50 (1990) 167–180.
[17]  S. Roy, G. Gordillo, V. Bergdall, J. Green, C.B. Marsh, L.J. Gould and C.K. Sen, Charac- terization of a pre-clinical model of chronic ischemic wound, Physiol. Genomics 37 (2009) 211–224.
[18]  C. Xue, A. Friedman and C.K. Sen, A mathematicalmodel of ischemic cutaneous wounds, PNAS 106 (2009) 16782–16787.
[19]  A. Yates, R. Callard and J. Stark, Combining  cytokine  signaling  with  T-bet  and  GATA-3 regulations in TH1 and TH2 differentiation:  A model for cellular decision making, J. Theor.  Biology 231 (2004) 181–196.
CAPTCHA Image